Online approach to handle concept drifting data streams using diversity
نویسندگان
چکیده
Concept drift is the trend observed in almost all real time applications. Many online and offline algorithms were developed in the past to analyze this drift and train our algorithms. Different levels of diversity are required before and after a drift to get the best generalization accuracy. In our paper, we present a new online approach Extended Dynamic Weighted Majority with diversity (EDWM) to handle various types of drifts from slow gradual to abrupt drifts. Our approach is based on the Weighted Majority(WM) vote of the ensembles containing different diversity levels. Experiments on the various artificial and real datasets proved that our proposed ensemble approach learns drifting concepts better than the existing online approaches in a resource constrained environment.
منابع مشابه
Learning from Concept Drifting Data Streams with Unlabeled Data
Contrary to the previous beliefs that all arrived streaming data are labeled and the class labels are immediately available, we propose a Semi-supervised classification algorithm for data streams with concept drifts and UNlabeled data, called SUN. SUN is based on an evolved decision tree. In terms of deviation between history concept clusters and new ones generated by a developed clustering alg...
متن کاملLearning from Data Streams with Concept Drift
Increasing access to incredibly large, nonstationary datasets and corresponding demands to analyse these data has led to the development of new online algorithms for performing machine learning on data streams. An important feature of real-world data streams is " concept drift, " whereby the distributions underlying the data can change arbitrarily over time. The presence of concept drift in a d...
متن کاملAn adaptive ensemble classifier for mining concept drifting data streams
Traditional data mining techniques cannot be directly applied to the real-time data streaming environment. Existing mining classifiers therefore need to be updated frequently to adopt the changes in data streams. In this paper, we address this issue and propose an adaptive ensemble approach for classification and novel class detection in concept-drifting data streams. The proposed approach uses...
متن کاملA New Framework for Data Streams Classification
Mining data streams has recently become an important and challenging task for a wide range of services, including credit card fraud detection, sensor networks and web applications. In these applications data do not typically take the form of persistent relations, but tend to arrive in multiple, continuous, rapid and timevarying data streams. Hence, conventional knowledge discovery tools cannot ...
متن کاملAn Efficient and Sensitive Decision Tree Approach to Mining Concept-Drifting Data Streams
Data stream mining has become a novel research topic of growing interest in knowledge discovery. Most proposed algorithms for data stream mining assume that each data block is basically a random sample from a stationary distribution, but many databases available violate this assumption. That is, the class of an instance may change over time, known as concept drift. In this paper, we propose a S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 14 شماره
صفحات -
تاریخ انتشار 2017